[Bitcoin: A Peer-to-Peer Electronic Cash System](https://bitcoin.org/bitcoin.pdf)

Bitcoin: A Peer-to-Peer Electronic Cash System

A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they’ll generate the longest chain and outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone. ...

Satoshi Nakamoto
[Brewer's Conjunction and the Feasibility of Consistent, Available, Partition-Tolerant Web Services](https://dl.acm.org/doi/10.1145/564585.564601)

Brewer's Conjunction and the Feasibility of Consistent, Available, Partition-Tolerant Web Services

When designing distributed web services, there are three properties that are commonly desired: consistency, availability, and partition tolerance. It is impossible to achieve all three. In this note, we prove this conjecture in the asynchronous network model, and then discuss solutions to this dilemma in the partially synchronous model.

Seth Gilbert, Nancy Lynch
[CAP Twelve Years Later: How the “Rules” Have Changed](https://ieeexplore.ieee.org/document/6133253)

CAP Twelve Years Later: How the “Rules” Have Changed

In the decade since its introduction, designers and researchers have used (and sometimes abused) the CAP theorem as a reason to explore a wide variety of novel distributed systems. The NoSQL movement also has applied it as an argument against traditional databases. The CAP theorem states that any networked shared-data system can have at most two of three desirable properties: consistency (C) equivalent to having a single up-to-date copy of the data; high availability (A) of that data (for updates); and tolerance to network partitions (P). This expression of CAP served its purpose, which was to open the minds of designers to a wider range of systems and tradeoffs; indeed, in the past decade, a vast range of new systems has emerged, as well as much debate on the relative merits of consistency and availability. The “2 of 3” formulation was always misleading because it tended to oversimplify the tensions among properties. Now such nuances matter. CAP prohibits only a tiny part of the design space: perfect availability and consistency in the presence of partitions, which are rare. ...

Eric Brewer
[Enabling Blockchain Innovations with Pegged Sidechains](https://blockstream.com/sidechains.pdf)

Enabling Blockchain Innovations with Pegged Sidechains

Since the introduction of Bitcoin in 2009, and the multiple computer science and electronic cash innovations it brought, there has been great interest in the potential of decentralised cryptocurrencies. At the same time, implementation changes to the consensuscritical parts of Bitcoin must necessarily be handled very conservatively. As a result, Bitcoin has greater difficulty than other Internet protocols in adapting to new demands and accommodating new innovation. We propose a new technology, pegged sidechains, which enables bitcoins and other ledger assets to be transferred between multiple blockchains. This gives users access to new and innovative cryptocurrency systems using the assets they already own. By reusing Bitcoin’s currency, these systems can more easily interoperate with each other and with Bitcoin, avoiding the liquidity shortages and market fluctuations associated with new currencies. Since sidechains are separate systems, technical and economic innovation is not hindered. Despite bidirectional transferability between Bitcoin and pegged sidechains, they are isolated: in the case of a cryptographic break (or malicious design) in a sidechain, the damage is entirely confined to the sidechain itself. ...

Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timón, Pieter Wuille
[Ethereum: A Next Generation Smart Contract & Decentralized Application Platform](https://ethereum.org/en/whitepaper/)

Ethereum: A Next Generation Smart Contract & Decentralized Application Platform

When Satoshi Nakamoto first set the Bitcoin blockchain into motion in January 2009, he was simultaneously introducing two radical and untested concepts. The first is the “bitcoin”, a decentralized peer-to-peer online currency that maintains a value without any backing, intrinsic value or central issuer. So far, the “bitcoin” as a currency unit has taken up the bulk of the pu blic attention, both in terms of the political aspects of a currency without a central bank and its extreme upward and downward volatility in price. However, there is also another, equally important, part to Satoshi’s g rand experiment: the concept of a proof of work based blockchain to allow for public agreement on the order of transactions. Bitcoin as an application can be described as a first-to-file system: if one entity has 50 BTC, and simultaneously sends the same 50 BTC to A and to B, only the transaction that gets confirmed first will process. There is no intrinsic way of determining from two transactions which came earlier, and for decades this stymied the development of decentralized digital currency. Satoshi’s blockchain was the first credible decentralized solution. And now, attention is rapidly starting to shift toward this second part of Bitcoin’s technology, and how the blockchain concept can be used for more than just money. ...

Vitalik Buterin